Intermediate Value Theorem continued

1. Assume that $f:[0,1] \rightarrow[0,1]$ is continuous on $[0,1]$. Prove that there exists some $c \in[0,1]$ such that

$$
f(c)=\sin \left(\frac{\pi c}{2}\right)
$$

Hint Apply the Intermediate Value Theorem to

$$
h(x)=f(x)-\sin \left(\frac{\pi x}{2}\right) .
$$

2. Prove a version of the Fixed Point Theorem. If $f, g:[a, b] \rightarrow[a, b]$ are continuous functions such that $f(a) \geq g(a)$ and $f(b) \leq g(b)$ then there exists $c \in[a, b]$ such that $f(c)=g(c)$.

Hint: Follow the hint in the previous question and consider $h(x)=$ $f(x)-g(x)$.
3. Prove that if f is a bounded continuous function on \mathbb{R} then there exists $c \in \mathbb{R}$ such that $f(c)=c^{3}$.

Boundedness Theorem

4. Recall the Boundedness Theorem which states that a continuous function on a closed bounded interval is bounded and attains its bounds. In this question we check if the conditions that the function be continuous on a closed, bounded interval are necessary. So, if remove any of these conditions does the conclusion of the Theorem still hold?

Give examples of
i) A function on a closed bounded interval that is not bounded.
ii) A continuous function on $(-1,1)$ with range $(-\infty, \infty)$, (and thus is not bounded).
iii) A function on [0, 1] that is bounded but does not attain its bounds.
5. i) a) Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\frac{1}{x^{2}+1}
$$

is bounded for all $x \in \mathbb{R}$.
b) Does f attain its bounds?
c) Is this a counter-example to the Boundedness Theorem, in particular that functions continuous on a closed bounded interval attain their bounds?
ii) a) Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\frac{x}{x^{2}+1}
$$

is bounded for all $x \in \mathbb{R}$.
b) Does f attain its bounds?
iii) Sketch the graphs of both functions.

Hint: Expand and rearrange the inequalities

$$
(x-1)^{2} \geq 0 \quad \text { and } \quad(x+1)^{2} \geq 0
$$

Strictly Monotonic functions

6. Prove that
i) for all $n \in \mathbb{N}$, with n even, then x^{n} is strictly increasing on $[0, \infty)$,
ii) for all $n \in \mathbb{N}$, with n even, then x^{n} is not strictly increasing on \mathbb{R},
iii) for all $n \in \mathbb{N}$, with n odd, then x^{n} is strictly increasing on \mathbb{R}.

Hint: use the factorization

$$
x^{n}-y^{n}=(x-y)\left(x^{n-1}+y x^{n-2}+y^{2} x^{n-3}+\ldots+y^{n-2} x+y^{n-1}\right) .
$$

In (iii) it might help to look at 3 cases, $x>y \geq 0, x>0>y$ and $0 \geq x>y$.
7. Prove that the hyperbolic functions $\sinh x$ and $\tanh x$ are strictly increasing on \mathbb{R} while $\cosh x$ is strictly increasing on $[0, \infty)$.

Hint. Prove that

$$
\sinh (x+y)>\sinh x
$$

for all $x \in \mathbb{R}$ and $y>0$, similarly for tanh, while

$$
\cosh (x+y)>\cosh x
$$

for all $x, y>0$.

Inverse Function Theorem

8. State the Inverse Function Theorem.

Explain how to define the following inverse functions,
i) $\sinh ^{-1}: \mathbb{R} \rightarrow \mathbb{R}$,
ii) $\cosh ^{-1}:[1, \infty) \rightarrow[0, \infty)$.
iii) $\tanh ^{-1}:(-1,1) \rightarrow \mathbb{R}$.

Don't forget to show that the inverses map between the sets shown.
A problem might be that the Inverse Function Theorem as stated in lectures refers to bounded interval while here we have $\mathbb{R},[1, \infty)$ and $[0, \infty)$. An approach might be to take a large N and consider sinh and tanh on $[-N, N]$ and cosh on $[0, N]$, define their inverses and finish by letting $N \rightarrow \infty$.

Logarithm

9. Prove that the natural logarithm, defined as the inverse of the exponential function, satisfies

$$
\ln a+\ln b=\ln a b
$$

for all $a, b>0$.
(As throughout this course you may assume that $e^{x} e^{y}=e^{x+y}$ for all $x, y \in \mathbb{R}$.)

Hint What are $e^{\ln a+\ln b}$ and $e^{\ln a b}$? You may need to use the fact that e^{x} is an injective function.

Additional Questions for practice

10. Show that

$$
2 \cos ^{2} x+3 \cos x+1=2 x^{2}+3 x+1
$$

has a solution in $[0, \pi / 2]$.
11. Show that

$$
\frac{x}{\sin x}+\frac{1}{\cos x}=\pi
$$

has a solution with $x \in(0, \pi / 2)$.

