Intermediate Value Theorem continued

1. Assume that $f : [0,1] \to [0,1]$ is continuous on [0,1]. Prove that there exists some $c \in [0,1]$ such that

$$f(c) = \sin\left(\frac{\pi c}{2}\right).$$

Hint Apply the Intermediate Value Theorem to

$$h(x) = f(x) - \sin\left(\frac{\pi x}{2}\right).$$

2. Prove a version of the *Fixed Point Theorem*. If $f, g : [a, b] \to [a, b]$ are continuous functions such that $f(a) \ge g(a)$ and $f(b) \le g(b)$ then there exists $c \in [a, b]$ such that f(c) = g(c).

Hint: Follow the hint in the previous question and consider h(x) = f(x) - g(x).

3. Prove that if f is a bounded continuous function on \mathbb{R} then there exists $c \in \mathbb{R}$ such that $f(c) = c^3$.

Boundedness Theorem

4. Recall the **Boundedness Theorem** which states that a *continuous* function on a closed bounded interval is bounded and attains its bounds. In this question we check if the conditions that the function be *continuous* on a *closed*, *bounded interval* are necessary. So, if remove any of these conditions does the conclusion of the Theorem still hold?

Give examples of

- i) A function on a closed bounded interval that is not bounded.
- ii) A continuous function on (-1, 1) with range $(-\infty, \infty)$, (and thus is not bounded).
- iii) A function on [0, 1] that is bounded but does not attain its bounds.

5. i) a) Show that the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \frac{1}{x^2 + 1}$$

is bounded for all $x \in \mathbb{R}$.

- b) Does f attain its bounds?
- c) Is this a counter-example to the Boundedness Theorem, in particular that functions continuous on a closed bounded interval attain their bounds?
- ii) a) Show that the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \frac{x}{x^2 + 1}$$

is bounded for all $x \in \mathbb{R}$.

b) Does f attain its bounds?

iii) Sketch the graphs of both functions.

Hint: Expand and rearrange the inequalities

$$(x-1)^2 \ge 0$$
 and $(x+1)^2 \ge 0$.

Strictly Monotonic functions

6. Prove that

- i) for all $n \in \mathbb{N}$, with n even, then x^n is strictly increasing on $[0, \infty)$,
- ii) for all $n \in \mathbb{N}$, with n even, then x^n is **not** strictly increasing on \mathbb{R} ,
- iii) for all $n \in \mathbb{N}$, with n odd, then x^n is strictly increasing on \mathbb{R} .

Hint: use the factorization

$$x^{n} - y^{n} = (x - y) \left(x^{n-1} + yx^{n-2} + y^{2}x^{n-3} + \dots + y^{n-2}x + y^{n-1} \right).$$

In (iii) it might help to look at 3 cases, $x > y \ge 0$, x > 0 > y and $0 \ge x > y$.

7. Prove that the hyperbolic functions $\sinh x$ and $\tanh x$ are strictly increasing on \mathbb{R} while $\cosh x$ is strictly increasing on $[0, \infty)$.

Hint. Prove that

 $\sinh(x+y) > \sinh x$

for all $x \in \mathbb{R}$ and y > 0, similarly for tanh, while

 $\cosh(x+y) > \cosh x$

for all x, y > 0.

Inverse Function Theorem

8. State the Inverse Function Theorem.

Explain how to define the following inverse functions,

- i) $\sinh^{-1} : \mathbb{R} \to \mathbb{R},$
- ii) $\cosh^{-1} : [1, \infty) \to [0, \infty).$
- iii) $\tanh^{-1}: (-1,1) \to \mathbb{R}.$

Don't forget to show that the inverses map between the sets shown.

A problem might be that the Inverse Function Theorem as stated in lectures refers to bounded interval while here we have \mathbb{R} , $[1, \infty)$ and $[0, \infty)$. An approach might be to take a large N and consider sinh and tanh on [-N, N] and cosh on [0, N], define their inverses and finish by letting $N \to \infty$.

Logarithm

9. Prove that the natural logarithm, defined as the inverse of the exponential function, satisfies

$$\ln a + \ln b = \ln ab$$

for all a, b > 0.

(As throughout this course you may assume that $e^x e^y = e^{x+y}$ for all $x, y \in \mathbb{R}$.)

Hint What are $e^{\ln a + \ln b}$ and $e^{\ln ab}$? You may need to use the fact that e^x is an injective function.

Additional Questions for practice

10. Show that

$$2\cos^2 x + 3\cos x + 1 = 2x^2 + 3x + 1$$

has a solution in $[0,\pi/2]\,.$

11. Show that

$$\frac{x}{\sin x} + \frac{1}{\cos x} = \pi$$

has a solution with $x \in (0, \pi/2)$.